Conversion Methods, Block Triangularization, and Structural Analysis of Differential-Algebraic Equation Systems
نویسندگان
چکیده
In a previous article, the authors developed two conversion methods to improve the Σ -method for structural analysis (SA) of differential-algebraic equations (DAEs). These methods reformulate a DAE on which the Σ -method fails into an equivalent problem on which this SA is more likely to succeed with a generically nonsingular Jacobian. The basic version of these methods processes the DAE as a whole. This article presents the block version that exploits block triangularization of a DAE. Using a block triangular form of a Jacobian sparsity pattern, we identify which diagonal blocks of the Jacobian are identically singular and then perform a conversion on each such block. This approach improves the efficiency of finding a suitable conversion for fixing SA’s failures. All of our conversion methods can be implemented in a computer algebra system so that every conversion can be automated.
منابع مشابه
Exploiting Fine Block Triangularization and Quasilinearity in Differential-algebraic Equation Systems
The Σ-method for structural analysis of a differential-algebraic equation (DAE) system produces offset vectors from which the sparsity pattern of DAE’s system Jacobian is derived; this pattern implies a fine block-triangular form (BTF). This article derives a simple method for quasilinearity analysis of a DAE and combines it with its fine BTF to construct a method for finding the minimal set of...
متن کاملSymbolic-numeric methods for improving structural analysis of differential-algebraic equation systems
Systems of differential-algebraic equations (DAEs) are generated routinely by simulation and modeling environments such as MODELICA and MAPLESIM. Before a simulation starts and a numerical solution method is applied, some kind of structural analysis is performed to determine the structure and the index of a DAE. Structural analysis methods serve as a necessary preprocessing stage, and among the...
متن کاملConversion Methods for Improving Structural Analysis of Differential-Algebraic Equation Systems
Differential-algebraic equation systems (DAEs) are generated routinely by simulation and modeling environments. Before a simulation starts and a numerical method is applied, some kind of structural analysis (SA) is used to determine which equations to be differentiated, and how many times. Both Pantelides’s algorithm and Pryce’s Σ -method are equivalent: if one of them finds correct structural ...
متن کاملA DAESA — a Matlab Tool for Structural Analysis of Differential-Algebraic Equations: Theory
DAESA, Differential-Algebraic Equations Structural Analyzer, is a MATLAB tool for structural analysis of differential-algebraic equations (DAEs). It allows convenient translation of a DAE system into MATLAB and provides a small set of easy-to-use functions. DAESA can analyze systems that are fully nonlinear, highindex, and of any order. It determines structural index, number of degrees of freed...
متن کاملSymbolic-Numeric Methods for Improving Structural Analysis of DAEs
Systems of differential-algebraic equations (DAEs) are generated routinely by simulation and modeling environments, such as MapleSim and those based on the Modelica language. Before a simulation starts and a numerical method is applied, some kind of structural analysis is performed to determine which equations to be differentiated, and how many times. Both Pantelides’s algorithm and Pryce’s Σ -...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.06693 شماره
صفحات -
تاریخ انتشار 2016